Check for
Updates

Unmasking the Lurking: Malicious Behavior Detection
for IoT Malware with Multi-label Classification

Ruitao Feng'
rtfeng@smu.edu.sg
Singapore Management University

Sen Li'
senli@tju.edu.cn
School of Future Technology, Tianjin

Sen Chen
senchen@tju.edu.cn
College of Intelligence and

Singapore University Computing, Tianjin University
China China
Mengmeng Ge Xuewei Li Xiaohong Li

mengmeng.ge@ntu.edu.sg
Nanyang Technological University
Singapore

lixuewei@tju.edu.cn
College of Intelligence and
Computing, Tianjin University

xiaohongli@tju.edu.cn
College of Intelligence and
Computing, Tianjin University

China China

Abstract

Current methods for classifying IoT malware predominantly
utilize binary and family classifications. However, these out-
comes lack the detailed granularity to describe malicious
behavior comprehensively. This limitation poses challenges
for security analysts, failing to support further analysis and
timely preventive actions. To achieve fine-grained malicious
behavior identification in the lurking stage of IoT malware,
we propose MaGraMal. This approach, leveraging masked
graph representation, supplements traditional classification
methodology, empowering analysts with critical insights
for rapid responses. Through the empirical study, which
took three person-months, we identify and summarize four
fine-grained malicious behaviors during the lurking stage,
constructing an annotated dataset. Our evaluation of 224 al-
gorithm combinations results in an optimized model for IoT
malware, achieving an accuracy of 75.83%. The maximum
improvement brought by the hybrid features and graph mask-
ing achieves 5% and 4.16%, respectively. The runtime over-
head analysis showcases MaGraMal’s superiority over the
existing dynamic analysis-based detection tool (12x faster).
This pioneering work combines machine learning and static
features for malicious behavior profiling.

CCS Concepts: « Security and privacy — Malware and

its mitigation.

“Corresponding author.
TBoth authors contributed equally.

@0eo

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

LCTES ’24, June 24, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0616-5/24/06
https://doi.org/10.1145/3652032.3657577

Keywords: 10T malware, Malicious behavior detection, Multi-
label classification, Masked Graph Embedding

ACM Reference Format:

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiao-
hong Li. 2024. Unmasking the Lurking: Malicious Behavior Detec-
tion for IoT Malware with Multi-label Classification. In Proceedings
of the 25th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES "24), June
24, 2024, Copenhagen, Denmark. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3652032.3657577

1 Introduction

The exponential growth of the Internet of Things promises
transformative impact, with an estimated 100 billion con-
nected devices by 2025 [42]. However, this surge exposes IoT
devices to escalating malware threats. Open-source releases
like Mirai [5] have spawned advanced variants, including
Hajime [15] and Satori [47], resulting in a surge in IoT mal-
ware incidents. IoT devices’ diverse and resource-constrained
nature exacerbates security challenges [9, 11, 20]. Conse-
quently, a mechanism for efficient and precise IoT malware
analysis becomes imperative for enhanced protection.
Existing detection methods primarily fall into dynamic
and static analysis. While dynamic methods yield detailed
insights into malicious behaviors, their resource-intensive
and architecture-dependent nature is impractical for IoT
devices[10, 12, 24, 45, 46]. Static analysis, on the other hand,
is faster but faces challenges in countering emerging mal-
ware [2, 23]. Recent advances in machine learning algo-
rithms, utilizing binary file [41, 41, 50], opcode [6, 7, 21, 25],
and graph-based features [1, 34, 35, 52, 53], show promise
in classification. Traditional methods, often family-focused,
lack the precision required for in-depth analysis of behaviors.
Consequently, we focus on cross-architecture IoT malware,
leveraging Function Call Graphs (FCGs) as the representa-
tion in this work. However, FCG analysis reveals redundancy
and noise nodes, impacting subsequent fine-grain classifi-
cation. Unlike binary and family classifications, multi-label

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3652032.3657577
https://doi.org/10.1145/3652032.3657577
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652032.3657577&domain=pdf&date_stamp=2024-06-20

LCTES ’24, June 24, 2024, Copenhagen, Denmark

classification is more susceptible to noise, emphasizing the
need for a refined approach.

In response to the outlined challenges, we refine our re-
search objectives to comprehensively understand fine-grained
malicious behaviors in IoT malware that drive actual lurking
actions. Specifically, our research draws inspiration from the
field of multi-object detection, which aims to locate multi-
ple unrelated targets within an image [8, 26]. Aligning with
this, our focus involves utilizing methods from multi-object
detection to leverage multi-label classification for a more de-
tailed categorization of IoT malware. This approach assigns
multiple labels to each instance [44], facilitating a system-
atic categorization to identify specific malicious behaviors.
This methodology addresses limitations in traditional clas-
sification methods, providing richer insights compared to
results that often lack valuable clues. As we grapple with
the challenge of isolating noise and redundant nodes in the
intricate FCG, we draw inspiration from image processing.
In image enhancement, masks are often employed to high-
light or suppress specific features. Similarly, we introduce a
‘masking’ strategy for the FCG to identify and suppress irrel-
evant nodes. By adapting principles, we selectively filter out
non-essential elements, refining the FCG into a more focused
and meaningful representation. This strategic ‘masking’ not
only streamlines the graph but also significantly improves
the precision of our classification results, akin to enhancing
the clarity of a digitally processed image.

In this work, we introduce MaGraMal, an innovative ap-
proach for multi-label classification of IoT malware. Lever-
aging a masked graph representation, MaGraMal refines
FCG by eliminating redundant and noisy nodes, enabling
the identification of fine-grained malicious behaviors during
the lurking phase. Through an empirical study, we delineate
four behaviors, validated through meticulous manual analy-
sis of 120 representative IoT malware samples. Employing a
three-person cross-analysis validation method, we construct
a new annotated dataset. Evaluation involves exploring 224
combinations of basic and multi-label classification algo-
rithms, achieving an accuracy rate of 75.83% (logistic+RT).
Ablation studies showcase a substantial accuracy improve-
ment in multi-label classification using hybrid features and
graph masking compared to those without them (maximum
improvement at 5% and 4.16%). Furthermore, detailed run-
time performance analysis positions MaGraMal favorably
against the existing dynamic analysis-based detection tool
(12x faster), highlighting its efficiency.

In summary, we make the following main contributions:

e We propose MaGraMal, a multi-label classification
method based on masked graph representation, aimed
at identifying fine-grained malicious behaviors of IoT
malware in the lurking stage.

e We conduct an empirical study on IoT malware and
summarize four fine-grained malicious behaviors in

96

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

its lurking stage. Based on this, we thoroughly ana-
lyze 120 representative samples to construct a new
annotated dataset [30].

e We systematically assess the effectiveness of 224 com-
binations of multi-label classification algorithms on
the labeled dataset, identifying the optimal model to
serve as a baseline for subsequent evaluations of the
soundness of our approach. Simultaneously, we con-
duct performance comparisons to showcase its superi-
ority over the dynamic analysis-based detection tool.

2 Empirical Study on Lurking Behaviors

In the complex realm of IoT security, understanding fine-
grained malicious behavior poses an underexplored chal-
lenge. Our empirical study, spanning three person-months,
delves into IoT malware to reveal motivations, implementa-
tion methods, and execution logic, contributing to a nuanced
understanding and taxonomy of lurking behaviors and un-
derlying insight.

2.1 Data Collection and Selection

We sourced 5,000 IoT malware samples from reputable repos-
itories, including VirusShare [48], VirusTotal [49], and IoT-
POT [36], spanning 2016 to 2020. Given that 95% of decon-
structed firmware in IoT devices is Linux-based [4, 22], our
focus lies in analyzing Executable and Linkable Format (ELF)
files—ubiquitous in Linux OS. To ensure malware quality,
we conducted preprocessing, eliminating non-ELF and cor-
rupted files.

Constructing alarge-scale standardized multi-label dataset
for IoT malware detection is resource-intensive. Unlike im-
age classification, cybersecurity data annotation necessitates
manual analysis by domain experts, consuming significant
time and effort. Given these constraints, we opted for a con-
cise yet representative dataset, selecting 120 samples with
specific rules. We prioritized representativeness by propor-
tionally selecting from various malicious families, addressing
the dominance of Gafgyt and Mirai(see Appendix § 1.2[29]
for details. We also addressed high-similarity issues [43] by
choosing one representative sample from similar clusters.
These rules streamline manual analysis, ensuring dataset
representativeness for robust experimentation.

2.2 Attack Chain Analysis and Behavior Summary

To comprehensively explore the details of each IoT malware
sample and ensure no omissions, we conduct a thorough
manual analysis of the attack chain of malicious software
based on the analysis reports. In this step, we focus on the
implementation details, methods, and intentions of malicious
behavior in IoT malware, as well as shortcomings in existing
technical analysis processes. To achieve complementary ad-
vantages from existing techniques and tools, we have devised
a multi-level comprehensive IoT malware analysis frame-
work. This framework provides detailed analysis steps and

Unmasking the Lurking: Malicious Behavior Detection for loT Malware with Multi-label...

Attack Chain Analysis Behavior Summary

E Syscalls E
E Process tree ||

open script file

'
'

'

' .

! determine cwd
'

match special content

bt

'

'

' - e~

+ | modify script file
'

'

'

'

'

'

Behavior
Method

Decompile
Code

[Gel All Behavior Attack ChainJ

ToT

T
Malware| ' DL P R
Generated Report |21 Final Report
-]
® & - Em Class|| & &
@ [+ 2] He S
& “ Class, | &
Malicious Messy&Coarse-grained| Malicious Systematic&Fine-grained
Family =~ Malicious Behavior Family Malicious Behavior

Figure 1. IoT Malware Analysis Process in Our Study

tool recommendations to ensure the comprehensiveness and
accuracy of manual analysis. The detailed analysis frame-
work is illustrated in Appendix § 1.1[29]. Specifically, we
first upload the samples to VirusTotal for analysis to obtain
preliminary analysis reports. Subsequently, as a validation
and supplementation step, we individually analyze the se-
lected IoT malware samples using the static analysis tool
Ghidra and the dynamic analysis tool LISA. To ensure the
credibility of our manual analysis, We referred to the tactics,
techniques, and procedures (TTPs) defined in the ATT&CK
framework[32] during the analysis process. During this stage,
our primary focus is identifying any potentially malicious
behaviors that may be overlooked by the reports. As illus-
trated in Figure 1, the iterative analysis process for each IoT
malware sample yields a more comprehensive, detailed, and
rigorously validated analysis report. We categorize and sum-
marize fine-grained malicious behaviors based on the con-
clusive analysis reports. Additionally, it compiles a detailed
summary table of malicious behaviors, providing specific
details outlined in Appendix § 3[29].

2.3 Insight through Analysis

While analyzing the IoT malware attack chain using FCGs,
we observed as we delved deeper into the function call chain
of specific malicious behaviors, especially moving away from
the FCG center, the analysis required more effort. However,
the result of the final analysis indicates that functions rep-
resented by these peripheral nodes exhibit a diminishing
correlation with the main functionality and core logic of the
malicious behavior. After further investigation, we identified
that the functions represented by these nodes are typically
auxiliary tool functions and standard library functions used
in the implementation logic of the attack chain. Importantly,
their internal function call relationships, though included
in the FCG, are not our focus; we solely rely on their stan-
dardized functional descriptions for the main logic of the
malicious behavior. Essentially, the function call relation-
ships within these nodes contribute little to our analysis

97

LCTES °24, June 24, 2024, Copenhagen, Denmark

and may even divert our focus negatively. For example, an-
alyzing a standard network programming library function
gethostbyname() in an IoT malware reveals its main function-
ality of domain name resolution (i.e., translating hostnames
into IP addresses and other information), obviating the need
for a deep dive into its internal implementation details (see
Appendix § 1.4[29] for details). Consequently, subsequent
nodes on this function call chain, farther from the source
node, significantly contribute less to our analysis and may
even hinder results. In summary, the presence of these pe-
ripheral nodes makes analysis complex and may mask key
malicious behavior characteristics.

Insight: While probing specific malicious behaviors in FCGs,
peripheral nodes’ diminishing relevance, especially distant ones,
was observed. A methodology to eliminate such nodes can focus on
critical functionalities to better understand malicious behaviors.

2.4 Definition of Lurking Behaviors

Our aim is to provide security analysts with systematic in-
sights into malicious behaviors through classification results,
enabling swift responses. Our strategy prioritizes predict-
ing the granularity of malicious behaviors’ semantics over
detailed implementation, enhancing generalization for im-
proved detection of new threats. Opting for a higher se-
mantic level reduces computational complexity, ensuring
practicality and potential interpretability. By focusing on
overall behavior patterns, the model’s predictions offer a
better understanding for analysts. We analyze IoT malware
in three stages: preparation, lurking, and attack, as detailed
in Appendix § 3[29].

In the preparation stage, [oT malware engages in activities
like gathering target device information, deploying attack
tools, and testing methods. Behaviors in this stage may lack
distinctiveness, focusing on fine-grained detection might
increase false positives, compromising detection credibility.
In the attack stage, although behaviors are distinct, their
direct and simple interaction with IoT device systems limits
their preventive fortification. Thus, more effective preven-
tion and detection should be adopted upon the lurking stage.
Behaviors here possess significant distinction, as their im-
plementation relies more on the target device, requiring pro-
found interaction with system resources. More importantly,
detecting fine-grained malicious behaviors in the lurking
stage allows security analysts to take more effective defen-
sive measures, aiming to hinder potential substantive attack
behaviors at an early stage [3].

Following an in-depth manual analysis aligned with the
tactics defined in MITRE ATT&CK framework, we distill our
findings into four distinct fine-grained malicious behaviors
occurring in the lurking stage of IoT malware. Correspond-
ingly, we coin the labels: Persistence, Privilege Escalation,
Deception, and Defense Evasion. These behaviors directly

LCTES ’24, June 24, 2024, Copenhagen, Denmark

Table 1. Label Distribution of Annotated Dataset

l Label Description #]

Persistence Maintaining long-term control over the victim’s sys- 88
tem after restart.

Privilege Acquiring higher system permissions for more de- 28

Escalation structive or theft activities.

Deception Hiding its true intention or identity by disguising as 69
or simulating normal applications, thereby deceiving
users or defense systems.

Defense Evading security software to ensuring malware not 102

Evasion being detected and blocked in the victim’s system.

impact the malware’s survivability, attack potency, and abil-
ity to remain concealed—critical factors in executing lurking
intents by existing IoT malware. An overview and imple-
mentation mechanism of these behaviors can be found in
the Appendix § 2 [29]. Table 1 illustrates the distribution of
these malicious behaviors in our constructed dataset.

2.5 Data Annotation

After comprehensively analyzing IoT malware attack chains,
we annotate each sample using a four-dimensional vector
representing lurking behaviors. Each dimension in the vector
is marked as “1" if the corresponding behavior is present
and “0" if absent. For dataset annotation quality control, we
adopted a cross-analysis verification method involving three
individuals in this work to ensure the high accuracy and
reliability of the data annotation. This quality control step is
crucial for ensuring the credibility of our research results. In
this process, two annotators conduct independent analyses
and annotations of the IoT malware, while a third individual
is responsible for verifying and confirming any disputed
analysis results. Through this three-person cross-analysis
verification phase, we can eliminate potential annotation
errors and inconsistencies, thus ensuring our research results
are reliable and highly accurate.

3 Approach
3.1 Overview

The proposed MaGraMal workflow, depicted in Figure 2,
consists of four key phases:

- Graph Representation: We perform static analysis on
the input cross-architecture IoT malware binary files using
Radare2 [38] and construct the corresponding FCG.
Masked Graph Construction: To determine the masking
area, we leverage centrality analysis to pinpoint central
nodes and fine-tune the balance parameter « to optimize
the mask radius, enabling the diverse masking levels.
Feature Extraction: Feature extraction from the masked

graph concentrates on structural and embedding features,
incorporating global structural information and local node
semantics, thereby lessening information loss.

MLC Model Construction: 224 distinct multi-label clas-
sification models are constructed using various basic and
multi-label classification algorithms.

98

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

3.2 Graph Representation

This phase focuses on constructing graphical representations
for Cross-Architecture IoT malware. Graph-based methods,
proven effective by existing work [27] and our analysis of
real-world samples, adeptly capture intricate relationships,
resist code obfuscation, and accommodate the differential
characteristics of Cross-Architecture IoT malware. Malware
compiled on diverse CPU architectures exhibits variations
due to distinct instruction sets. Despite these differences,
leveraging FCG empowers machine learning algorithms to
identify similarities at the function call level. This approach
addresses the challenge of cross-architecture differences in
learning, facilitating knowledge transfer across diverse sub-
domains of malware detection. We utilize Radare2 for static
analysis, generating a concise FCG from a Control Flow
Graph (CFG). While the CFG accurately captures interac-
tions during execution, it tends to produce significantly large
graphs, even for moderately-sized binary files, leading to a
substantial increase in processing and analysis time. In con-
trast, the FCG provides a more streamlined representation,
prioritizing performance and graphical clarity, consequently,
adopted as our representation in this work.

3.3 Masked Graph Construction

When analyzing and summarizing the attack chains of IoT
malware, we observed that certain function calls presented
in the FCG did not provide useful information for our analy-
sis. With curiosity in mind, we delved into the underlying
implementation of key malicious behaviors by tracing the
function calls. An interesting observation reveals that the
implementation of such behaviors always ends with nodes
representing auxiliary tool functions or standard library func-
tions. Therefore, we only need to focus on the functional-
ity they provide, without concerning ourselves with their
internal implementation details. Essentially, their internal
implementation details contribution to comprehending mali-
cious behavior is negligible, leading us to question whether
they can add positive value during machine learning. This
question will be answered with the results of an ablation
study presented in § 4.4.2.

In other words, within an FCG, surrounding nodes closer
to and execute prior to such function calls typically provide
more valuable information. Conversely, nodes far from the
source offer limited value and even potentially introduce
substantial redundancy and noise during machine learning.
This dynamic can obscure crucial features of malicious be-
havior, introducing complexity and uncertainty into machine
learning and impacting model efficiency and accuracy. There-
fore, we introduce the Masked Graph, a more precise and
clean malware representation, achieved by eliminating the
aforementioned peripheral nodes according to specific do-
main knowledge obtained by our empirical study (details in
§ 2.3). This approach significantly reduces the redundancy

Unmasking the Lurking: Malicious Behavior Detection for loT Malware with Multi-label...

LCTES °24, June 24, 2024, Copenhagen, Denmark

Graph
Representation

Masked Graph
Construction

Model
Construction

Feature '
Extraction |

101
010
101

IoT Malware
with 4 labels

€3

Best Model

4 labels

Input Vector !

Figure 2. The Overview of MaGraMal

and noise impact caused by peripheral nodes according to
our evaluation results in § 4.4.2.

3.3.1 Key Components of Masked Graph. Before intro-
ducing the approach, we establish definitions for key compo-
nents essential to understanding masked graph construction.

Definition 1 (Central Node). The central node, typically the
program’s entry point, holds a crucial role in the FCG, linking
program segments and dictating calling relationships. Ana-
lyzing it and its surroundings unveils primary functions and
behaviors, offering vital cues for subsequent manual or auto-
mated analysis. Key central node characteristics encompass:
Centrality. Typically located in the core area, central nodes
are associated with multiple core functionalities, enhancing
their prominence in the graph.

High Degree of Connectivity. Central nodes in the FCG or
graph generally have many connecting edges, indicating close
associations and interactions with other nodes.
Wide-ranging Influence. Central nodes typically exert signif-
icant influence with their behavior or attributes significantly
implicating the operation of the entire program.

Definition 2 (Edge Node). Edge nodes, positioned at the pe-
riphery of an FCG, signify functions near the program’s end,
often linked to auxiliary or library functions. These nodes typi-
cally offer limited insights into malware core logic, introducing
redundancy and noise. Key characteristics include:
Marginality. Edge nodes are usually located at the edges of
an FCG, distinct from the center and unrelated to the core
behaviors.

Sparse Connectivity. Edge nodes typically exhibit fewer con-
nections to other nodes in the graph, earning them the desig-
nation of “fringe members”. Unlike central nodes, they are not
as densely connected within the graph.

Local Influence. Edge nodes’ role may be limited to specific
local areas of the graph, resulting in minimal global impact
on program semantics.

Definition 3 (Mask Radius). The mask radius in graph mask-
ing sets the distance threshold from the central node to the
covered edge nodes. Beyond the radius, nodes are labeled edge
nodes; within, they are not. This parameter’s value impacts the
tradeoff between preserving semantic information and graph
size reduction. The choice hinges on analysis needs and mask-
ing objectives.

99

3.3.2 Mask Radius Calculation. Mask radius calculation
faces a challenge with graphs of varying sizes and char-
acteristics in FCGs. The complexity of IoT malware imple-
mentations results in significant variations in the number
of nodes in their FCGs. A fixed mask radius is impractical,
risking over-masking complex graphs and losing valuable
information, or under-masking simpler graphs and retaining
redundant nodes. To address this, we propose an adaptive
mask radius calculation method that dynamically adjusts the
mask radius based on the graph’s scale for more precise and
effective masking tailored to diverse situations.

To gain an approximate scale and outline of the FCG, we
first create a set Setsparh (G, Ucenter), containing the shortest
paths from the central node vcenter to all other reachable
nodes v, in graph G. Next, we proceed with the calcula-
tion of the mask radius. The calculation involves two key
factors: the balance parameter ¢ and the maximum value
in the set Setspash (G, Ucenter)- Specifically, to adaptively de-
termine the mask radius size for FCGs of different scales,
we select the maximum value in Setsparh (G, Ucenrer) as the
base radius. Introducing a balance parameter a controls the
final mask radius size, striking a balance between retaining
essential information and eliminating redundant and noisy
nodes. This approach tailors the mask radius to the specific
characteristics of each graph. Finally, the calculated result
of a - base_radius is rounded up to obtain the optimal mask
radius. Through this adaptive method, we can flexibly fine-
tune the size of the mask radius, adapting to the various
characteristics of graphs.!.

Giving a malware binary P, its FCG is represented as a
directed graph G = {V,E}, where V = {v1,v3,0s, ...,0m,} is
the set of vertices, and E = {(e;;)} is the set of directed
edges. The calculation of the adaptive mask radius is defined
as follows:

Setspath(G: Ucenter) = {ShortestPathycenter+m (Vcenter, Um)}
base_radius = Max(Setspash (G, Vcenter))
mask_radius = [a - base_radius], a € (0,1]

where ShortestPath(vcenter, Um) is the shortest path between
the central node and node i.

IThe effectiveness is validated in mitigating the impact of noise in lurk-
ing behavior detection on real-world data. Discussion on potential threats
brought by adversarial attacks can be found in Appendix § 1.3[29]

LCTES ’24, June 24, 2024, Copenhagen, Denmark

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

Obtain Central Node

° Q

=

=]

&

E

=

(5]

o

L

=

5 -

= | Candidate Center Node

o
\ Verify -
Q

Origin Graph

Final Center Node

Mask Radius Calculation

Calculate Base Radius

=<
.

N
1 Al
mask_flags,

ay \ True ,

=1
\

| different &

Best Mask Radius

Masked Graph

Figure 3. Masked Graph Construction Process

3.3.3 Graph Masking Process. We elaborate on the pro-
cess of graph masking in Figure. 3, where the input is the
FCG of IoT malware. The output is a masked graph following
the outlined masking procedures as follows:

Step 1. Our first step is to acquire the central node. For IoT
malware, given that the execution typically begins from the
program entry function, we logically designate it as the can-
didate central node temporarily. Note that, due to the possi-
bility of certain malicious software employing multi-layered
function nesting to conceal critical malicious behaviors, this
may result in the significant departure of the implementation
nodes of such key malicious behaviors from the program
entry function node. If, at this point, we directly define the
entry function node as the central node, critical malicious
behaviors implementation nodes will be considered as noise
and consequently masked. Hence, we introduce degree cen-
trality to validate the candidate central node obtained above.
We treat the FCG as a social network and use degree cen-
trality to measure the “social connections" (paths) of each
“individual” (node). Central nodes resemble individuals with
extensive social connections in a social network, exhibiting
high centrality and many dense function calls, setting them
apart from other nodes. Specifically, we calculate the degree
centrality Cgegree(v;) for all nodes in the graph and rank
them from highest to lowest. The mathematical definition of
degree centrality is as follows:

out_degree(v;)

Cdegree(vi) = V-1

where out_degree(v;) is the out degree of node v;, which is
the number of outgoing edges from node v;, and V represents
the set of all nodes.

Subsequently, we assessed whether the degree centrality
of the candidate central node, determined based on the pro-
gram entry function, ranks among the top. This validation
ensures that the candidate holds a central position by com-
paring its centrality to others. Therefore, if no other nodes
have a higher degree of centrality with practical analytical

100

value, the candidate is considered the central node. Other-
wise, we select the node with the highest degree of centrality
and significant practical relevance.

Step 2. Based on the central node identified in the previous
step, and using the mask radius calculation method intro-
duced in § 3.3.2, we calculate the base radius and mask radius
for the FCG. In this step, we can adjust the balance parameter
«a to find an optimal balance point that preserves key seman-
tic information in the graph while maximally eliminating
redundant and noisy nodes.

Step 3. We set a mask flag for each node, indicating whether
the node will be filtered out in the subsequent graph analysis
process. It can be calculated by:

distance = ShortestPath(veenter, 0i)

mask_flag; = {

true, distance > mask_radius

false, distance < mask_radius

The specific approach involves calculating the shortest path
between each node and the central node, comparing it to the
mask radius. If the distance exceeds the radius, the node is
marked as an edge node and flagged for masking; conversely,
if it is set as unmasked. Eventually, this process yields the fi-
nal masked graph. Subsequent analysis filters nodes based on
the mask flags. This approach effectively removes redundant
and noisy nodes, improving the multi-label classification’s
effectiveness and significantly reducing the graph size.

3.4 Feature Extraction

The feature extraction step transforms the masked graph
into a numerical vector representation. Graph embedding,
achieved through graph2vec [33], efficiently maps high-dim
graph data to low-dim dense vectors, capturing latent pat-
terns and semantic information effectively. This unsuper-
vised representation learning technique outperforms tradi-
tional algorithms in scalability and computational adaptabil-
ity [51]. To overcome graph embedding feature limitations,
we incorporate global insights by introducing structural

Unmasking the Lurking: Malicious Behavior Detection for loT Malware with Multi-label...

attributes such as node count (indicating identified func-
tions), edge count (illustrating function call relationships),
and graph density (depicting dependency and interaction
patterns). These attributes provide a comprehensive view
of the function call graph’s overall structure with minimal
performance overhead, enhancing our understanding of the
binary file. The mathematical definition of graph density is
as follows:

i1 deg(v:)

Density(G) = m(m - 1)

where deg(v;) is the degree of node i, V = v1,02,03, ..., Up,.
In conclusion, the input for subsequent models is a (D + 3)-
dimensional numerical vector combining graph embedding
(D-dimension) and structure features (3-dimension).

3.5 MLC Model Construction

We will primarily discuss the construction of the multi-label
classification model for IoT malware. We first adopt the graph
embedding features and graph structural features extracted
in § 3.4 as a unified input vector. The paired input vectors
and the labels representing fine-grained malicious behaviors
for each sample are fed into the multi-label classification
algorithms. In our work, a total number of 224 combinations
of machine learning algorithms for muli-label detection is
selected. Specifically, we employ 14 basic classification algo-
rithms, whose categories and brief descriptions are shown
in Appendix § 3[29]. Additionally, based on these basic clas-
sification algorithms, we utilize 16 multi-label classification
algorithms. These algorithms fall into two categories of ap-
proaches: algorithm adaptation [44] and problem transfor-
mation [13]. Algorithm adaptation involves extending tra-
ditional single-label classification algorithms to multi-label
classification tasks to enhance performance and adaptabil-
ity. It aims to adapt single-label classification algorithms
to multi-label contexts, often by altering the output or loss
function of the single-label classification algorithm. Prob-
lem transformation converts multi-label problems into a
series of single-label problems, which are then addressed
using single-label classifiers. This method is flexible as it
can use any single-label classifier. The correspondence be-
tween these multi-label classification algorithms and the two
methods are shown in Appendix § 3[29], with 2 belonging
to the algorithm adaptation method and 14 to the problem
transformation method. We ultimately identified the best-
performing classifier by comparing the performance of those
above 224 multi-label classification models.

4 FEvaluation

We evaluate MaGraMal by addressing the following RQ:

RQ1: How is the effectiveness of using multi-label clas-
sification in IoT malware detection? This RQ aims to
compare the results of different multi-label classification

101

LCTES °24, June 24, 2024, Copenhagen, Denmark

models under various balance parameter a values to vali-
date the effectiveness of MaGraMal in classifying malicious
behaviors during the lurking phase of IoT malware.

RQ2: How is the soundness of crucial design? This RQ
focuses on ablation experiments targeting graph structural
features and graph masking to validate soundness.

RQ3: How is the performance of MaGraMal in detect-
ing IoT malware? This RQ explores the runtime overhead
of MaGraMal and compares it with an IoT malware sandbox
to investigate performance differences.

4.1 Experimental Environment

All experiments are conducted on the Ubuntu server of In-
tel(R) Xeon(R) E5-2620 v4 and 36GB RAM and implemented
on MEKA v1.9.2 [39] [31] in Python 3.8.

4.2 Datasets and Metrics

The dataset comprises 120 representative IoT malware sam-
ples selected from a preliminary analysis of 5,000 samples,
labeled based on the four lurking stages of malicious behav-
ior (see § 2.4 and Table 1 for details). MaGraMal evaluation
involves 5-fold cross-validation, dividing the dataset into
subsets. Each iteration designates one subset as the test set,
while the remaining 4 form the training set. This process
iterates 5 times, and average values constitute the final re-
sults.

Evaluation metrics, following Q. Qiao et al. [37], include
Sample-ACC, F1-Score, Hamming Loss, Zero-One Loss for
sample-based assessment, and Label-ACC for label-based
assessment, collectively gauging MaGraMal’s effectiveness.

4.3 ROQ1: Effectiveness

4.3.1 Different Multi-Classification Models.

Setup. We experimented on 224 multi-label classification
models, including 14 basic and 16 multi-label algorithms,
in the evaluation of effectiveness. Employing 5-fold cross-
validation enabled a comprehensive and robust assessment,
identifying optimal algorithmic combinations.

Result. In Table 2, we present experimental results, ranking
models by sample accuracy. Optimal results are highlighted
in bold with a gray background for emphasis.

For sample accuracy, Logistic Regression combined with
Random Tree achieved the highest at 0.7167 among the 224
models. Models 2 to 6 closely followed with a 0.7 accuracy,
while Models 7 and 8 scored 0.6917. Notably, the Random
Forest and RAKEL model, not the highest in sample accuracy,
excelled in Hamming loss (0.1833), Zero-One loss (0.4583),
and F1-Score (0.8429). This signifies its effectiveness in mini-
mizing label prediction mismatches, maintaining a balance
between precision and recall. Beyond sample accuracy, label
accuracy (Label-ACC,y4) was computed for each model, rep-
resenting the average accuracy of the four labels. Model 2,
second in sample accuracy, led in label accuracy with 0.8167,
showcasing its precision in predicting individual labels.

LCTES ’24, June 24, 2024, Copenhagen, Denmark

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

Table 2. The Results of Top 8 Models with Sample-ACC

Model Rank 1 2 3 4 5 6 7 8
BC Logistic RF Logistic Logistic Logistic =~ SMO RF Logistic
MLC RT RAKEL BCC CT HASEL CDN BR BR

Hamming loss 0.2042 0.1833 0.2021 0.2000 0.1854 0.2146 0.1979 0.2042
Zero-One loss | 0.5333 0.4583 0.5167 0.5000 0.4917 0.5000 0.5250 0.5333
F1-score 0.8176 0.8429 0.8248 0.8268 0.8399 0.8129 0.82838 0.8229
Label;-ACC 0.7417 0.8000 0.7917 0.7917 0.7917 0.7500 0.7917 0.7833
Label,-ACC 0.8750 0.8250 0.8333 0.8333 0.8583 0.7833 0.8333 0.8167
Label;-ACC 0.7833 0.7917 0.8250 0.8167 0.8333 0.7583 0.7500 0.7917
Labely-ACC 0.7833 0.8500 0.7417 0.7583 0.7750 0.8500 0.8333 0.7917
Label-ACCyy4 0.7958 0.8167 0.7979 0.8000 0.8146 0.7854 0.8021 0.7958
Sample-ACC 0.7167 0.7000 0.7000 0.7000 0.7000 0.7000 0.6917 0.6917

From 224 models, the top 8 were identified, with opti-
mal sample and label accuracies reaching 0.7167 and 0.8167,
affirming the viability and effectiveness of multi-label classi-
fication in IoT malware detection.

4.3.2 Different Balance Parameter .

Setup. We utilized the top-performing 8 models from Experi-
ment § 4.3.1. Assessing sample-based accuracy as the primary
metric, we investigated the impact of different balance pa-
rameters () on classification. Considering the diverse base
radius of function call graphs in IoT malware (typically 4 to
9), we selected five « values (0.1, 0.3, 0.5, 0.7, 0.9) to avoid
unnecessary resource consumption.

Result. Figure 4 depicts how different models’ accuracy
varies with the balance parameter a. The x-axis represents
a, and the y-axis shows sample accuracy. Analysis reveals
fluctuations in accuracy across the eight models, indicating
the significant impact of different « values on masked graph
construction and subsequent classification.

Upon in-depth analysis, we find that when « is 0.7, each
model achieves its highest or tied-for-highest accuracy (Fig-
ure 4a to Figure 4f). Models 7 and 8 also exhibit tied-for-
highest accuracy at @=0.7 (Figure 4g and Figure 4h). This
suggests that at @=0.7, the masked graph effectively filters
out redundant and noisy nodes, optimizing the balance be-
tween information retention and noise reduction, thereby
enhancing classification capabilities.

4.4 RQ2:Soundness

4.4.1 Ablation for Graph Structural Feature.

Setup. Leveraging the 8 optimal models from § 4.3.1, we
employed two input construction methods. The first utilized
only graph embedding features for model training. The sec-
ond incorporated both graph embedding and structure fea-
tures. Comparing the classification results of models trained
with these methods assesses the impact of adding graph
structure features on classification enhancement.

Result. In Table 3, we showcase model results utilizing two
distinct input vector types. Shaded entries signify models
trained with graph structure features, differentiating them
from those relying solely on graph embedding features. Blue

arrows highlight trends for models using both features: up-
ward denotes an increase, while downward signals a de-
crease. Hamming Loss and Zero-One Loss reductions indi-
cate enhanced classification, whereas F1-Score, Label-ACC,
and Sample-ACC increments signify improved capabilities.

Across the 8 best models, Models 1 to 5 show significant
enhancement in all metrics with added graph structure fea-
tures. Models 6 and 8 exhibit optimization, while Model 7
shows a slight decline. 6 models show significant gains in
Sample-ACC, with Model 4 leading by 0.0667. Even the small-
est improvement is 0.0083, while Model 6 remains stable and
Model 7 experiences a slight drop. In terms of Label-ACC,
5 models demonstrate marked improvement, with Model 1
leading at 0.0437. Model 8 maintains stable accuracy. Notably,
Model 2 achieves a 0.8429 F1-Score, and Model 1 shows the
highest improvement at 0.0409. After incorporating graph
structure features, 7 models exhibit substantial F1-Score im-
provement, indicating a refined balance between precision
and recall—critical for practical applications. Most models ex-
perience varying degrees of enhancement in Hamming Loss
and Zero-One Loss, suggesting an improved understanding
of intricate data relationships and better label differentiation.

In summary, introducing graph structural features during
feature extraction benefits 7 out of 8 models, enhancing F1-
Score and Zero-One Loss. Top improvements reach 0.0409 in
F1-Score and a 0.0917 reduction in Zero-One Loss. Six mod-
els either improve or maintain performance across sample
accuracy, label accuracy, and Hamming Loss. Variability in
utilizing structural features arises due to algorithmic con-
straints or model complexity, yielding inconsistent improve-
ments across models and metrics. Nonetheless, results affirm
that most models significantly benefit from incorporating
graph structural features.

4.4.2 Ablation for Masked Graph.

Setup. To gauge the enhancement with the masked graph,
we conducted comparative experiments with and without
the graph masking on the top 8 models with optimal a=0.7.
Result. In Figure 4, we introduced a red dashed line par-
allel to the x-axis as a reference for the model’s accuracy
without the masked graph, enhancing readability. The blue
curve represents the accuracy variation after introducing

102

Unmasking the Lurking: Malicious Behavior Detection for loT Malware with Multi-label...

LCTES °24, June 24, 2024, Copenhagen, Denmark

8 o Q07150 8 0.7100 8 0.7100
L o740 o700 Lo.7000 <L o.7000
2 2 0.7050 2 0.6900 2 0.6900
g'mzuu g'o 7000 g.o.ﬁeoo %o.ﬁeooo'
© @ 0.6950 N
(] 0.7000 wn W) 0.6700 . W) 0.6700
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Balance Parameter (a) Balance Parameter (a) Balance Parameter (a) Balance Parameter (a)
(a) Logistic&RT (b) RF&RAKEL (c) Logistic&BCC (d) Logistic&CT
Q07200 / O 0.7000 / / bt 0.7000
o o O 0.7050 o
< < <
i, 0.7000 i) 0.6500 i) 0.7000 i’ 0.6800
2 n0.6000 2 3
g 0.6800 g E 0.6950 g 0.6600
("] d. W o0.550¢,, ("]
0. 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Balance Parameter (a) Balance Parameter (a) Balance Parameter (a) Balance Parameter (a)
(e) Logistic&HASEL (f) SMO&CDN (g) RE&BR (h) Logistic&BR
Figure 4. The Plots of Sample-ACC on Different «
Table 3. The Results of Top 8 Models with Sample-ACC
Model 1 2 3 4 5 6 7 8
BC Logistic RF Logistic Logistic Logistic SMO RF Logistic
MLC RT RAKEL BCC CT HASEL CDN BR BR
Hamming loss; | 0.2479 0.1896 0.2042 0.2208 0.2042 0.2083 0.1833 0.2042
Hamming loss 0.2042] 0.1833] 0.2021] 0.2000] 0.1854] 0.2146 0.1979 0.2042
Zero-One loss; 0.6250 0.5000 0.5417 0.5750 0.5583 0.5167 0.4917 0.5833
Zero-One loss | 0.5333] 0.4583] 0.5167 05000/ 0.4917] 0.5000] 0.5250 0.5333]
F1-score; 0.7758 0.8392 0.8185 0.8047 0.8216 0.8201 0.8415 0.8208
Fl-score 0.81767 0.84297 0.82487 0.82687 0.8399T 0.8129T 0.8288 0.82297
Label-ACC, 07521 0.8104 0.7958 07792 0.7958 0.7917 0.8167 0.7958
Label-ACC 0.79587 0.8167T 0.7979T 0.8000T 0.81467 0.7854 0.8021 0.7958
Sample-ACC, 0.6667 0.6917 0.6667 0.6333 0.6583 0.7000 0.7167 0.6583
Sample-ACC 0.7167T 0.7000T 0.7000T 0.7000T 0.7000T 0.7000 0.6917 0.69177
the masked graph. Experiment § 4.3.2 revealed the optimal 14{ | — cpu(runtime) 5002
. . = _ - =
result at « = 0.7. In Figure 4, under this value, the model R12 g5 4000
consistently outperforms the one without the masked graph, %12 e 300 §
. .. . time=
maintaining at least the same level even in the worst-case sce- = 200 >
nario. For Model 1, sample accuracy increased from 0.7167 to 2 4 100 g
0.7583, a significant improvement of 0.0416. Similarly, Models © 2 0 2
7 and 8 saw an increase from 0.6917 to 0.7083, representing 0 0 100 200 300 400 471
an improvement of 0.0166, though modest compared to other Time(s)

models. Based on this, we can answer the questions in § 3.3.
Notably, Certain « values may lead to slightly lower sample
accuracy than the model without the masked graph, suggest-
ing over-masking. This occurs when mask operations with a
specific a are applied to the FCG, potentially masking nodes
containing crucial semantic information and degrading the
model’s classification ability.

4.5 RQ3: Performance
4.5.1 Runtime Overhead.

Setup. We deployed the best models from Experiment § 4.3.1,
conducting end-to-end analysis on 120 samples. We moni-
tored system performance metrics, to explore MaGraMal’s
analysis time composition and its overall performance.
Result. In the detection process of MaGraMal, illustrated in
Figure 5, three distinct stages delineate the runtime overhead,
each marked by different background colors:

103

Figure 5. Runtime Performance of MaGraMal

(1) FCG Extraction: MaGraMal initiates by extracting
the function call graph of the given IoT malware. As shown
in Figure 5, this stage consumes the majority of runtime
resources, constituting nearly 95% of the overall analysis
time. Notably, peaks in memory usage correlate with larger
IoT malware samples processed by Radare2.

(2) Feature Extraction: This stage involves constructing
a masked graph based on the function call graph and extract-
ing graph structure and embedding features. As shown in
Figure 5, it takes approximately 19 seconds, with CPU and
memory usage exhibiting acceptable increments.

(3) Model Classification: In the final stage (i.e., predic-
tion), despite increased CPU and memory usage, the comple-
tion time is merely about 2 seconds, contributing a minimal
0.4% to the overall analysis time. This stage occupies the
smallest runtime overhead among the three steps.

LCTES ’24, June 24, 2024, Copenhagen, Denmark

Table 4. Performance Compared to LISA [45]

System CPU Usage Memory Usage Execution Time
(%) (MB) (second)
MaGraMal P¢o, 83 4
LISA [45] Pisy, 80 51

4.5.2 Comparison with Sandbox.

Setup. To assess the runtime performance difference be-
tween our MaGraMal and existing fine-grained behavior
analysis tools, we chose LISA[45], a sandbox developed specif-
ically for dynamic analysis of IoT malware. Although LISA’s
reports do not directly offer behavior analysis report, their
extensive analysis logs are sufficient to provide key clues
for subsequent in-depth analysis. Similarly, our MaGraMal,
by revealing lurking behaviors without meticulous analysis,
also serves as a foundation for subsequent in-depth analysis,
offering crucial clues. In essence, our objective aligns: to
furnish key clues for subsequent analyses, thereby ensuring
the comparability and completeness of the analysis.
Result. The performance metrics in Table 4 highlight the
resource consumption during the runtime of the tools. Ma-
GraMal exhibits superior efficiency with a CPU usage of 6%,
outperforming LISA at 15%. While memory consumption is
comparable (83MB for MaGraMal and 80MB for LISA), Ma-
GraMal excels in execution time, averaging 4 seconds com-
pared to LISA’s 51 seconds. The results demonstrate that our
system outperforms LISA Sandbox in overall performance.

5 Related Work

With the rising tide of malware, IoT malware classifica-
tion becomes increasingly crucial, compared to a broader
scope [16-19, 37]. IoT Malware classification can entail cate-
gorizing binary files as malicious or benign, or further clas-
sifying malware samples into different known malicious
software families. Existing methods are mainly divided into
two categories: dynamic methods [10, 12, 28, 45, 46] and
static methods[2, 23]. Dynamic methods refer to researchers
dynamically executing malware in a virtual environment
to simulate its real behavior, enabling them to collect use-
ful information such as API call sequences. Jeon et al.[24]
proposed a method to dynamically analyze IoT malware
on an ARM architecture virtual machine, extract relevant
behavioral features transformed into images, and classify
them using CNN. On the other hand, static methods refer
to the static inspection of software code to identify mali-
cious code within it. Compared to dynamic methods, static
methods are faster and easier to implement. Alhanahnah
et al.[2] proposed a method for coarse-grained clustering
by generating signatures based on statistical data and print-
able string features. They also utilized bindiff[54] to calcu-
late the similarity of binary file structures for fine-grained
clustering. With the proliferation of machine learning, re-
searchers have begun to utilize machine learning for IoT
malware classification[37]. Depending on the features used

104

Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

in the research, related work can be categorized into binary-
based[41, 50], opcode-based[6, 21, 25], graph-based[1, 35, 52],
etc. Deng et al.[14] proposed a method to generate an ASCG
by improving the semantic representation of dynamic system
call information using information from the Linux Program-
mer’s Manual. Ban et al.[7] proposed a method for charac-
terizing IoT malware using multimodal analysis. Nguyen et
al.[34] proposed a method for extracting information from
printable strings presented in FCG to generate PSI-Graph.

6 Discussion and Future Work

While our method effectively tackles redundancy and noise
in covert behavior detection, it’s a preliminary solution fo-
cused on efficient lurking stage malicious behavior detection.
However, limitations persist: (1) Similar to existing ML/DL-
based malware detection models [40], adversarial attacks
introducing extreme-scale samples may challenge the ex-
isting masked graph approach, affecting performance (see
Appendix § 1.3[29] for details); (2) The current method lacks
precision in distinguishing crucial information and redun-
dancy within the same mask radius, leading to potential
over- or under-masking; (3) A uniform alpha setting may not
consider individual differences between samples, impacting
classification; (4) Models trained on limited data may struggle
with emerging and evolving fine-grained malicious behav-
iors, limiting generalization. To address these limitations,
future research will focus on: (1) Improving adaptability to
extreme-scale samples for enhanced resilience against ad-
versarial attacks; (2) More efficient mechanisms to pinpoint
crucial information in the function call graph; (3) Explor-
ing self-adaptive alpha adjustment strategies to different
malware; (4) Updating mechanism for new implementation
methods of lurking behaviors in recent IoT malware.

7 Conclusion

This paper presents MaGraMal, a novel method designed for
multi-label classification of IoT malware. The approach is
based on a masked graph representation, which refines the
FCG by identifying and suppressing redundant and noisy
nodes, thereby producing more targeted and meaningful
representation. Through this methodology, we successfully
identify and characterize four fine-grained malicious behav-
iors exhibited by IoT malware during the lurking stage.

Acknowledgments

This work was partially supported by the National Key R&D
Project (2021YFF1201102), the National Natural Science Foun-
dation of China (Key Program , Grant No0.62332005, Grant
No.62102284), the Cyber Security Agency of Singapore under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN), and the Smart Platform Infrastructure Research
on Integrative Technology (SPIRIT) under Grant CSA-CSEC-
DC-20-083.

Unmasking the Lurking: Malicious Behavior Detection for loT Malware with Multi-label...

References
[1] Hisham Alasmary, Aminollah Khormali, Afsah Anwar, Jeman Park,

[10

[11

[12

[13

[14

[15

[17

—

—

—

—_

=

]

—

—

Jinchun Choi, Ahmed Abusnaina, Amro Awad, Dachun Nyang, and
Aziz Mohaisen. 2019. Analyzing and detecting emerging Internet of
Things malware: A graph-based approach. IEEE Internet of Things
Journal 6, 5 (2019), 8977-8988.

Mohannad Alhanahnah, Qicheng Lin, Qiben Yan, Ning Zhang, and
Zhenxiang Chen. 2018. Efficient signature generation for classifying
cross-architecture IoT malware. In 2018 IEEE conference on communi-
cations and network security (CNS). IEEE, 1-9.

Omar Alrawi, Charles Lever, Kevin Valakuzhy, Kevin Snow, Fabian
Monrose, Manos Antonakakis, et al. 2021. The Circle of life: A {large-
scale} study of the {IoT} malware lifecycle. In 30th USENIX Security
Symposium (USENIX Security 21). 3505-3522.

Kishore Angrishi. 2017. Turning internet of things (iot) into internet
of vulnerabilities (iov): Iot botnets. arXiv preprint arXiv:1702.03681
(2017).

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric,] Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. 2017. Understanding the mirai
botnet. In 26th USENIX security symposium (USENIX Security 17). 1093—
1110.

Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo.
2018. Robust malware detection for internet of (battlefield) things de-
vices using deep eigenspace learning. IEEE transactions on sustainable
computing 4, 1 (2018), 88-95.

Tao Ban, Ryoichi Isawa, Shin-Ying Huang, Katsunari Yoshioka, and
Daisuke Inoue. 2019. A cross-platform study on emerging malicious
programs targeting iot devices. IEICE TRANSACTIONS on Information
and Systems 102, 9 (2019), 1683-1685.

Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown.
2004. Learning multi-label scene classification. Pattern recognition 37,
9 (2004), 1757-1771.

Rajasekhar Chaganti, Vinayakumar Ravi, and Tuan D Pham. 2022.
Deep learning based cross architecture internet of things malware
detection and classification. Computers & Security 120 (2022), 102779.
Cheng-Yu Chen and Shun-Wen Hsiao. 2019. IoT malware dynamic
analysis profiling system and family behavior analysis. In 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 6013-6015.
Andrei Costin and Jonas Zaddach. 2018. Iot malware: Comprehensive
survey, analysis framework and case studies. BlackHat USA 1, 1 (2018),
1-9.

Ahmad Darki and Michalis Faloutsos. 2020. RIOTMAN: a systematic
analysis of IoT malware behavior. In Proceedings of the 16th Interna-
tional Conference on emerging Networking EXperiments and Technolo-
gies. 169-182.

Alex GC de Sa, Cristiano G Pimenta, Gisele L Pappa, and Alex A
Freitas. 2020. A robust experimental evaluation of automated multi-
label classification methods. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference. 175-183.

Liting Deng, Hui Wen, Mingfeng Xin, Hong Li, Zhiwen Pan, and Limin
Sun. 2023. Enimanal: Augmented cross-architecture IoT malware
analysis using graph neural networks. Computers & Security 132
(2023), 103323.

Sam Edwards and loannis Profetis. 2016. Hajime: Analysis of a decen-
tralized internet worm for IoT devices. Rapidity Networks 16 (2016),
1-18.

Ruitao Feng, Sen Chen, Xiaofei Xie, Lei Ma, Guozhu Meng, Yang Liu,
and Shang-Wei Lin. 2019. MobiDroid: A Performance-Sensitive Mal-
ware Detection System on Mobile Platform. In 2019 24th International
Conference on Engineering of Complex Computer Systems.

Ruitao Feng, Sen Chen, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin,
and Yang Liu. 2020. A Performance-Sensitive Malware Detection
System Using Deep Learning on Mobile Devices. IEEE Transactions on

105

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

LCTES °24, June 24, 2024, Copenhagen, Denmark

Information Forensics and Security (2020).

Ruitao Feng, Jing Qiang Lim, Sen Chen, Shang-Wei Lin, and Yang
Liu. 2020. SeqMobile: An Efficient Sequence-Based Malware Detec-
tion System Using RNN on Mobile Devices. In 2020 25th International
Conference on Engineering of Complex Computer Systems.

Ruitao Feng, Yang Liu, and Shangwei Lin. 2019. A Performance-
Sensitive Malware Detection System on Mobile Platform. In Formal
Methods and Software Engineering, Yamine Ait-Ameur and Shengchao
Qin (Eds.). Springer International Publishing, Cham, 493-497.
Hisham Shehata Galal, Yousef Bassyouni Mahdy, and Mohammed Ali
Atiea. 2016. Behavior-based features model for malware detection.
Journal of Computer Virology and Hacking Techniques 12 (2016), 59-67.
Sibel Gulmez and Ibrahim Sogukpinar. 2021. Graph-based malware
detection using opcode sequences. In 2021 9th International Symposium
on Digital Forensics and Security (ISDFS). IEEE, 1-5.

Nikolai Hampton and Patryk Szewczyk. 2015. A survey and method
for analysing soho router firmware currency. (2015).

Philokypros Ioulianou, Vasileios Vasilakis, Ioannis Moscholios, and
Michael Logothetis. 2018. A signature-based intrusion detection sys-
tem for the internet of things. Information and Communication Tech-
nology Form (2018).

Jueun Jeon, Jong Hyuk Park, and Young-Sik Jeong. 2020. Dynamic
analysis for IoT malware detection with convolution neural network
model. [EEE Access 8 (2020), 96899-96911.

BooJoong Kang, Suleiman Y Yerima, Kieran McLaughlin, and Sakir
Sezer. 2016. N-opcode analysis for android malware classification and
categorization. In 2016 International conference on cyber security and
protection of digital services (cyber security). IEEE, 1-7.

Feng Kang, Rong Jin, and Rahul Sukthankar. 2006. Correlated label
propagation with application to multi-label learning. In 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), Vol. 2. TEEE, 1719-1726.

Chuangfeng Li, Guangming Shen, and Wei Sun. 2021.
architecture Intemet-of-Things malware detection based on graph
neural network. In 2021 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 1-7.

Sen Li, Mengmeng Ge, Ruitao Feng, Xiaohong Li, and Kwok Yan Lam.
2023. Automatic Detection and Analysis towards Malicious Behavior
in IoT Malware. In 2023 IEEE International Conference on Data Mining
Workshops (ICDMW). IEEE, 1332-1341.

MaGraMal. 2024. Appendix. https://github.com/MaGraMal2024/
MaGraMal/blob/main/Appendix.pdf

MaGraMal. 2024. Dataset. https://github.com/MaGraMal2024/
MaGraMal/tree/main/Dataset

Meka. 2016. Meka. https://github.com/Waikato/meka/tree/
f0cc96133399afadc80d2b8a6342913fe9057fb0

MITRE. 2013. ATT&CK. https://attack.mitre.org

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec:
Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017).

Huy-Trung Nguyen, Quoc-Dung Ngo, and Van-Hoang Le. 2020. A
novel graph-based approach for IoT botnet detection. International
Journal of Information Security 19, 5 (2020), 567-577.

Fan Ou and Jian Xu. 2022. S3Feature: A static sensitive subgraph-
based feature for android malware detection. Computers & Security
112 (2022), 102513.

Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Mat-
sumoto, Takahiro Kasama, and Christian Rossow. 2016. IoTPOT: A
novel honeypot for revealing current IoT threats. Journal of Informa-
tion Processing 24, 3 (2016), 522-533.

Qijing Qiao, Ruitao Feng, Sen Chen, Fei Zhang, and Xiaohong Li.
2022. Multi-label Classification for Android Malware Based on Active
Learning. IEEE Transactions on Dependable and Secure Computing
(2022).

Cross-

https://github.com/MaGraMal2024/MaGraMal/blob/main/Appendix.pdf
https://github.com/MaGraMal2024/MaGraMal/blob/main/Appendix.pdf
https://github.com/MaGraMal2024/MaGraMal/tree/main/Dataset
https://github.com/MaGraMal2024/MaGraMal/tree/main/Dataset
https://github.com/Waikato/meka/tree/f0cc96133399afa4c80d2b8a6342913fe9057fb0
https://github.com/Waikato/meka/tree/f0cc96133399afa4c80d2b8a6342913fe9057fb0
https://attack.mitre.org

LCTES ’24, June 24, 2024, Copenhagen, Denmark Ruitao Feng, Sen Li, Sen Chen, Mengmeng Ge, Xuewei Li, and Xiaohong Li

[38] Radare2. 2006. Radare2. https://rada.re/r/
[39] Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes.
2016. Meka: a multi-label/multi-target extension to weka. Journal of

dynamic malware detection using machine learning in IP reputation
for forensics data analytics. Future Generation Computer Systems 118
(2021), 124-141.

Machine Learning Research 17, 21 (2016), 1-5. [47] J Vijayan. 2018. Satori Botnet Malware Now Can Infect Even More
[40] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2021. IoT Devices.

Adversarial machine learning attacks and defense methods in the cyber [48] VirusShare. 2012. VirusShare. https://virusshare.com/

security domain. ACM Computing Surveys (CSUR) 54, 5 (2021), 1-36. [49] VirusTotal. 2004. VirusTotal. https://www.virustotal.com/
[41] Jiawei Su, Danilo Vargas Vasconcellos, Sanjiva Prasad, Daniele Sgan- [50] Tzu-Ling Wan, Tao Ban, Shin-Ming Cheng, Yen-Ting Lee, Bo Sun,

durra, Yaokai Feng, and Kouichi Sakurai. 2018. Lightweight classifica- Ryoichi Isawa, Takeshi Takahashi, and Daisuke Inoue. 2020. Efficient

[t

=

tion of IoT malware based on image recognition. In 2018 IEEE 42Nd
annual computer software and applications conference (COMPSAC),
Vol. 2. IEEE, 664-669.

Robin Taylor, David Baron, and Daniel Schmidt. 2015. The world
in 2025-predictions for the next ten years. In 2015 10th International
Microsystems, Packaging, Assembly and Circuits Technology Conference
(IMPACT). IEEE, 192-195.

Sadegh Torabi, Mirabelle Dib, Elias Bou-Harb, Chadi Assi, and Mourad
Debbabi. 2021. A strings-based similarity analysis approach for char-
acterizing IoT malware and inferring their underlying relationships.
IEEE Networking Letters 3, 3 (2021), 161-165.

Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classifi-
cation: An overview. International Journal of Data Warehousing and

detection and classification of internet-of-things malware based on
byte sequences from executable files. IEEE Open Journal of the Com-
puter Society 1 (2020), 262-275.

Chia-Yi Wu, Tao Ban, Shin-Ming Cheng, Takeshi Takahashi, and
Daisuke Inoue. 2023. IoT malware classification based on reinterpreted
function-call graphs. Computers & Security 125 (2023), 103060.

Fei Xiao, Yi Sun, Donggao Du, Xuelei Li, and Min Luo. 2020. A novel
malware classification method based on crucial behavior. Mathematical
Problems in Engineering 2020 (2020), 1-12.

Yipin Zhang, Xiaolin Chang, Yuzhou Lin, Jelena Misi¢, and Vojislav B
Misi¢. 2020. Exploring function call graph vectorization and file statis-
tical features in malicious PE file classification. IEEE Access 8 (2020),
44652-44660.

Mining (IIDWM) 3, 3 (2007), 1-13.

Daniel Uhricek. 2020. Lisa-multiplatform linux sandbox for analyzing
iot malware.

Nighat Usman, Saeeda Usman, Fazlullah Khan, Mian Ahmad Jan,
Ahthasham Sajid, Mamoun Alazab, and Paul Watters. 2021. Intelligent

[54] zynamics. 2011. bindiff. https://www.zynamics.com/bindiff.html
[45

—

Received 2024-02-29; accepted 2024-04-01
[46

—

106

https://rada.re/r/
https://virusshare.com/
https://www.virustotal.com/
https://www.zynamics.com/bindiff.html

	Abstract
	1 Introduction
	2 Empirical Study on Lurking Behaviors
	2.1 Data Collection and Selection
	2.2 Attack Chain Analysis and Behavior Summary
	2.3 Insight through Analysis
	2.4 Definition of Lurking Behaviors
	2.5 Data Annotation

	3 Approach
	3.1 Overview
	3.2 Graph Representation
	3.3 Masked Graph Construction
	3.4 Feature Extraction
	3.5 MLC Model Construction

	4 Evaluation
	4.1 Experimental Environment
	4.2 Datasets and Metrics
	4.3 RQ1: Effectiveness
	4.4 RQ2: Soundness
	4.5 RQ3: Performance

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

